首页> 外文OA文献 >Extending Bell's Model: How Force Transducer Stiffness Alters Measured Unbinding Forces and Kinetics of Molecular Complexes
【2h】

Extending Bell's Model: How Force Transducer Stiffness Alters Measured Unbinding Forces and Kinetics of Molecular Complexes

机译:扩展贝尔模型:力传感器的刚度如何改变测得的解键力和分子复合物的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Forced unbinding of complementary macromolecules such as ligand-receptor complexes can reveal energetic and kinetic details governing physiological processes ranging from cellular adhesion to drug metabolism. Although molecular-level experiments have enabled sampling of individual ligand-receptor complex dissociation events, disparities in measured unbinding force FR among these methods lead to marked variation in inferred binding energetics and kinetics at equilibrium. These discrepancies are documented for even the ubiquitous ligand-receptor pair, biotin-streptavidin. We investigated these disparities and examined atomic-level unbinding trajectories via steered molecular dynamics simulations, as well as via molecular force spectroscopy experiments on biotin-streptavidin. In addition to the well-known loading rate dependence of FR predicted by Bell's model, we find that experimentally accessible parameters such as the effective stiffness of the force transducer k can significantly perturb the energy landscape and the apparent unbinding force of the complex for sufficiently stiff force transducers. Additionally, at least 20% variation in unbinding force can be attributed to minute differences in initial atomic positions among energetically and structurally comparable complexes. For force transducers typical of molecular force spectroscopy experiments and atomistic simulations, this energy barrier perturbation results in extrapolated energetic and kinetic parameters of the complex that depend strongly on k. We present a model that explicitly includes the effect of k on apparent unbinding force of the ligand-receptor complex, and demonstrate that this correction enables prediction of unbinding distances and dissociation rates that are decoupled from the stiffness of actual or simulated molecular linkers.
机译:互补性大分子(如配体-受体复合物)的强制解开可以揭示控制生理过程(从细胞粘附到药物代谢)的能量和动力学细节。尽管分子水平的实验使单个配体-受体复合物解离事件的采样成为可能,但在这些方法中测得的解键力FR的差异导致推断的结合能和平衡动力学的显着变化。即使普遍存在的配体-受体对,即生物素-链霉亲和素,也记录了这些差异。我们研究了这些差异,并通过操纵分子动力学模拟以及生物素-链霉亲和素的分子力谱实验研究了原子级的解链轨迹。除了由贝尔模型预测的著名的FR加载速率依赖性外,我们发现实验可访问的参数(例如力传感器k的有效刚度)可以显着扰动能量分布和复合物对于足够刚度的表观解粘力力传感器。另外,在结合力上至少有20%的变化可归因于在能量和结构上可比的配合物之间初始原子位置的微小差异。对于分子力谱实验和原子模拟中的典型力传感器而言,这种能垒扰动会导致复合物的推论能量和动力学参数,这些参数强烈依赖于k。我们提出了一个模型,该模型明确包括了k对配体-受体复合物的表观解结合力的影响,并证明了这种校正能够预测与实际或模拟分子连接子的刚度脱钩的解离距离和解离速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号